Die Kristallstruktur von C₄AlB₂₄

VON GEORG WILL*

Eduard Zintl Institut der Technischen Hochschule, Lehrstuhl für Strukturforschung, Darmstadt, Deutschland

(Eingegangen am 20. Juli 1967 und wiedereingereicht am 16. Mai 1968)

The crystal structure of C_4AlB_{24} has been determined from X-ray diffractometer data. The structure is similar to that of AlB_{10} and consists of four boron icosahedra, which are linked by direct B-B bonds and by carbon bridges.

Einleitung

Von Matkovich, Economy & Giese (1964) wurden vor einigen Jahren eingehende Untersuchungen am System C-Al-B durchgefürt. Dabei wurde vor allem über die Aufnahme von Kohlenstoff in Kristalle berichtet, die früher als binäre Aluminiumboride der Zusammensetzung AlB₁₀ und AlB₁₂ (Kohn, Katz & Giardini, 1958) angegeben wurden. Besondere Aufmerksamkeit erhielten dabei die ternären Phasen C4AlB24 und C2Al2B48, die mit einer gleichen Elementarzell und in der selben Raumgruppe wie die früher berichteten binären Phasen AlB₁₀ und AlB₁₂ kristallisieren. Versuche, kohlenstoffreie AlB₁₀-Kristalle darzustellen, blieben erfolglos und es entstanden so Zweifel an der Existenz von AlB₁₀ überhaupt. Zur Klärung dieses Sachverhaltes haben wir Einkristallstrukturuntersuchungen durchgeführt, und zwar sowohl mit Kristallen der mutmasslichen Zusammensetzung AlB₁₀ als auch der Zusammensetzung C₄AlB₂₄. Die untersuchten Kristalle kamen aus verschiedenen Laboratorien und wurden uns freundlicherweise von den Autoren zur Verfügung gestellt. Für beide Verbindungen sind chemische Analysen veröffentlicht (Kohn, Katz & Giardini, 1958; Matkovich, Economy & Giese, 1964), die sehr genau der angegebenen Zusammensetzung AlB₁₀ und C_4AlB_{24} entsprechen.

* Gegenwärtige Anschrift: Minerologisch-Petrologisches Institut und Museum der Universität, Bonn, Deutschland. Über die Kristallstruktur von AlB_{10} , die einzige Verbindung in der Reihe der höheren Aluminiumboride deren Kristallstruktur bekannt ist, haben wir bereits berichtet (Will, 1963, 1967) und wir berichten hier die Ergebnisse der Strukturuntersuchung von C₄AlB₂₄.

C₄AlB₂₄ kristallisiert orthorhombisch in der Raumgruppe $B2/b2_1/m 2/m$, mit a = 8,88, b = 9,10, c = 5,69 Å, mit 2 Formeleinheiten in der Elementarzelle (Matkovich, Economy & Giese 1964). Die gemessenen Dichten schwanken zwischen $\varrho_{exp} = 2,48$ und 2,57 g.cm⁻³ ($\varrho_{röntg} = 2,42$ g.cm⁻³) und lassen eine statistische Besetzung der Aluminiumlagen erkennen. Für den von uns untersuchten Kristall ergibt sich aus der Analyse der Elektronendichte die Zusammensetzung C₄Al_{1,3}B₂₄ ($\varrho_{röntg} = 2.47$ g.cm⁻³).

Strukturbestimmung

Die Intensitäten wurden auf einem automatisierten Equi-Inclinations-Weissenberg-Goniometer der Firma STOE mit Cu K α -Strahlung und LiF-Monochromator gemessen. Der verwendete Kristall hatte die Gestalt einer nahezu hexagonalen Tafel mit den maximalen Abmessungen $0,2 \times 0,3 \times 0,14$ mm. Für Kupferstrahlen beträgt der lineare Absorptionskoeffizient $\mu =$ 1,55 cm⁻¹, und auf eine Korrektion der Absorption wurde daher verzichtet.

Die Strukturanalyse erfolgte in Anlehnung an die Kristallstrukturbestimmung von AlB_{10} (Will, 1967). Ausgehend von vier Borikosaedern in der Elementarzelle bestimmten wir durch Fourier-und Differenzfou-

Bezeichnung der

T-1-11-	1(-)	Voordington	a una d	Standandahwaiahungan	non	C AIR.
Tabelle	I(a).	Noorainaien	unu	StandardaDweichungen	001	C4AID24

	Punktlag deren Bes (Multij	gen und setzung plier)	x	$\sigma(x)$	y	<i>σ</i> (<i>y</i>)	Z	$\sigma(z)$	Atome in C ₈ Al _{2,1} B ₅₁ (Perrotta, Townes & Potenza, 19 6 9)
B(1)	8(f)	8.0	0.0490	7	0.0845	11	0,0		3B
B(2)	800	8.0	0.2513	6	0.0903	10	0,0		4B
B(3)	16(h)	16.0	0.1518	3	0.1544	9	0,2542	7	5B
B(4)	8(g)	8.0	0.3178	6	0.25		0,1600	10	2B
B(5)	8(g)	8.0	-0.0153	6	0.25		0,1597	10	1B
C S	8(f)	8.0	0.1529	5	0.0598	11	0,50		6C
Å1(1)	4(c)	0.66	0.2911	20	0.25		0,50		8A1
A(2)	4(b)	1.07	0.0	-	0.0		0,50		9B
Al(3)	16(h)	0,99	0,4615	17	0,0396	43	0,17 9 6	34	7 A l

rierrechnungen die Lagen der Bor-, Kohlenstoff- und Aluminiumatome, und verfeinerten anschliessend die Parameter mit dem Least-Squares Programm ORFLS (Busing, Martin & Levy, 1962). Für die Gewichte der Reflexe wurde bei der Verfeinerung σ proportional zu |F| angenommen, und die nicht beobachteten Reflexe wurden etwa 0,5 mal dem kleinsten beobachteten Reflex gesetzt. Der erreichte *R*-Faktor betrug damit R'=0,081 (wR=0,088), und bei Ausschluss der nicht beobachteten Reflexe R=0,07. Bei den Verfeinerungsrechnungen wurden auch die Multiplikationsfaktoren der Aluminiumatome variiert und daraus die Besetzungsdichten dieser Atome abgeleitet [Tabelle 1(a)]. Aus diesen Werten errechnen sich 2,6 Aluminiumatome, statt der zwei Atome, wie es die stöchiometrische Zusammensetzung erwarten lässt. Die gefundene Übereinstimmung der Strukturfaktoren zusammen mit den errechneten Standardabweichungen und den beobachteten Schwankungen in der Dichte lassen dieses Ergebnis reell erscheinen, und wir nehmen daher für die Zusammensetzung des von uns untersuchten Kristallexemplares die Formel C₄Al_{1,3}B₂₄ an.

Tabelle 1(b). Anisotrope Temperaturfaktor-Koeffizienten ($\times 10^4$) von C₄AlB₂₄

 $\{\exp\left[-(h^2\beta_{11}+k^2\beta_{22}+l^2\beta_{33}+2hk\beta_{12}+2hl\beta_{13}+2kl\beta_{23})\right]\}$

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β23
B(1)	25	66	61	4	0	0
B(2)	10	85	9	-11	0	0
B(3)	1	3	35	1	3	3
B(4)	5	29	44	0	-12	0
B(5)	20	0	15	0	-2	0
С	21	34	26	19	0	0
Al(1)	44	50	138	0	0	0
Al(2)	59	89	26	16	0	0
Al(3)	20	0	67	0	0	0

Beschreibung der Struktur

Die Kristallstruktur von C₄AlB₂₄ ist analog der Struktur von AlB10 aus Borikosaedern aufgebaut, die die vierzähligen Punktlagen 4(c) besetzen: $\pm (x, \frac{1}{4}, 0; \frac{1}{2} + x)$ $\frac{1}{4},\frac{1}{2}$ mit x=0,152 (Fig.1). Jedes Ikosaeder ist im Kristall durch sechs direkte Ikosaederkontakte über B-B-Bindungen B(1)-B(1'), B(4)-B(5') und B(5)-B(4')an benachbarte Ikosaeder gebunden. Die restlichen sechs Boratome sind über Kohlenstoffbrücken mit Nachbarikosaedern verbunden. Die Kohlenstoffatome C in $\delta(f)$ haben dabei die Koordinationszahl vier mit 3 C-B-Bindungen zu den Ikosaeder-Boratomen B(3) $(2 \times)$ und B(2) im Abstand 1,64 und 1,61 Å, und einer vierten Bindung zu Atomen in der Punktlage 4(b) im Abstand 1,46 Å, wo wir im Mittel 3,4 Elektronen vorfinden. Die Interpretation der Elektronendichte auf dieser Punktlage 4(b) ist umstritten. Wir haben in dieser Arbeit (und auch in AlB_{10}) eine statistische Besetzung durch Aluminium angenommen, die einzige Möglichkeit unter Beibehaltung der Ergebnisse der chemischen Analyse. Allgemein kann man jedoch feststellen,

dass die Atome in den Punktlagen 8(f)-4(b)-8(f) lineare Ketten bilden, die jeweils drei Ikosaeder verbinden. In 8(f) (hier durch die 8 C-Atome besetzt) haben wir in AlB₁₀ eine Besetzung mit 50% Bor und 22% Aluminium angenommen. AlB₁₀ und C₄AlB₂₄ zeigen strukturell eine enge Verwandtschaft mit Borkarbid, es bestehen aber auch deutliche Unterschiede, was sich schon in der Kristallsymmetrie äussert (orthorhombische Symmetrie in AlB₁₀ und C₄AlB₂₄, gegenüber rhomboedrischer Symmetrie in B₄C), und die entscheidenden Unterschiede sind ohne Zweifel in der Besetzung dieser Ikosaeder-Verbindungen 8(f)-4(b)-8(f) zu suchen.

Der mittlere B-B-Abstand in den Ikosaedern beträgt $(1,810\pm0,002)$ Å in Übereinstimmung mit den mittleren B-B-Abständen in AlB₁₀ $(1,810\pm0,003$ Å)

Fig. 1. (a) Projektion der Bor-Ikosaeder und Kohlenstoffbrücken in die (ab)-Ebene. (b). Projektion der Hälfte der Elementarzelle (a/2) in die (bc)-Ebene zur Veranschaulichung der Ikosaederketten längs [001]. B(3) und C befinden sich in einer Ebene (x=0,152 und 0,153), während B(2) oberhalb dieser Ebene liegt (x=0,251).

und in tetragonalem Bor $(1,805 \pm 0,015 \text{ Å})$. Die Abstände und Bindungswinkel zeigen, dass die Borikosaeder nahezu regelmässig sind. Als Mittelwerte für die Bindungswinkel errechnet man 59,9°±0,2 und 107,6° ±0,4. (Im regulären Ikosaeder haben diese Winkel die Werte 60° und 108°.)

Vergleich der Kristallstrukturen von AlB₁₀ und C₄AlB₂₄

Tabelle 2 zeigt eine Gegenüberstellung der Elektronenverteilung in den Lücken zwischen den Ikosaedern in C₄AlB₂₄ und in AlB₁₀. Beide Kristalle besitzen demnach innerhalb der Fehlergrenzen die gleiche statistische Verteilung der Aluminiumatome. Der einzige Unterschied wäre die Besetzung der Ikosaederbrücken in den Punklagen 8(f) (vgl. auch Fig. 1) mit 8 Kohlenstoffatomen in C₄AlB₂₄ gegenüber einer statistischen Besetzung durch 4 Boratome und 2,7 Aluminiumatome in AlB₁₀. Doch auch hier ist die Dichte der Elektronenverteilung in beiden Kristallen nahezu die gleiche: 6 Elektronen in C₄AlB₂₄ gegenüber 5,7 Elektronen in AlB₁₀. Eine Differenzfouriersynthese $(5,2 \text{ AlB}_{10}-$ 2 C₄AlB₂₄) liess daher entgegen unseren Erwartungen keine ausgeprägten Maxima oder Minima und damit Unterschiede der Elektronendichte erkennen.

Die Elektronenverteilung in den als AlB10 und C₄AlB₂₄ angegeben Kristallen ist also die gleiche, und es ergeben sich damit Zweifel an der Existenz einer kohlenstoff-freien Verbindung der Zusammensetzung AlB₁₀. Da eine Röntgenstrukturanalyse prinzipiell nur die Elektronendichte im Kristall, nicht aber die Zuordnung zu Elementen zu bestimmen gestattet, ist eine Interpretation der gemessenen Elektronendichten auf die Ergebnisse der chemishen Analyse angewiesen, und dies gilt besonders bei den hier untersuchten Kristallen, wo sich zwischen den dichtgepackten Bor-Ikosaedern zahlreiche Lücken befinden, die eine Aufnahme von Fremdatomen begünstigen. In der Strukturanalyse müssen diese Zwischenkosaederplätze mit Aluminium, Bor oder Kohlenstoff statistisch besetzt werden.

Die von uns berichtete Strukturbestimmung von AlB₁₀ (Will, 1967) stützt sich auf chemische Mikroanalysen (Kohn, Katz & Giardini, 1958), die in letzter Zeit auf Grund einer Analyse mit einer Mikrosonde in Zweifel gezogen wurden (Perrotta, Townes & Potenza, 1969).* Unter der Annahme von Kohlenstoff im Kristall wurde daraufhin die Strukturanalyse des von uns als AlB_{10} interpretierten Kristalles wiederholt und ihm dabei eine Zusammensetzung $C_8Al_{2,1}B_{51}$ zugeordnet (Perrotta, Townes & Potenza, 1969). Die Ergebnisse dieser Analyse sind zum besseren Verständnis in die Tabellen 1 und 2 mitaufgenommen worden.

In dieser Arbeit werden allerdings zusätzliche Boratome im Kristall angenommen, die den Analysenergebnissen von AlB₁₀ und von C₄AlB₂₄ widersprechen. Diese extra Boratome wurden auf die Ikosaederlücken 4(b) gelegt [in unserer Zuordnung Al(2)] so dass die Ikosaeder durch -C-B-C-Brücken zu (B₁₂)₃-C-B-C-(B₁₂)₃-Ketten ähnlich wie in der Struktur von Borkarbid, B₄C, verbunden werden. Es darf auch darauf hingewiesen werden, dass neben den in Tabelle 2 angegebenen Interpretationen noch andere Strukturvorschläge eine befriedigende, wenn auch chemisch nicht sinnvolle Wiedergabe der Messwerte erlauben, wie wir in früheren Arbeiten zeigen konnten (Will, 1966, 1967).

Eine eindeutige Entscheidung zwischen AlB₁₀ und C_4AlB_{24} ist daher zur Zeit nicht möglich. Allerdings reichen die röntgenographischen Daten auch nicht aus, eine Verbindung der Zusammensetzung AlB₁₀ mit Sicherheit auszuschliessen denn die gemessene Elektronenverteilung erlaubt mit gleicher Zuverlässigkeit eine Interpretation unter der Annahme der Zusammensetzung AlB₁₀ als auch der Zusammensetzung C_4AlB_{24} .

Die Bindungsverhältnisse in den Kristallstrukturen C_4AlB_{24} und in AlB_{10} lassen sich mit den quanten-

* Es muss jedoch ausdrücklich darauf hingewiesen werden, dass die Beobachtung von Kohlenstoff in einer Mikrosonde mit grosser Vorsicht zu bewerten ist. Aus der Elektronenmikroskopie ist seit langem bekannt (vgl. z. B. Z. wiss. Mikroskopie und mikroskopische Technik (1956), 62, 465) dass sich durch die Einwirkung des Elektronenstrahls in sehr kurzer Zeit Kohleschichten auf dem Präparat bilden, die aus dem Kohlewasserstoff des Restdampfes herrühren, In der Mikro sonde liegen sehr analoge experimentelle Verhältnisse vor, und der berichtete Nachweis von Kohlenstoff in AlB10 muss daher nicht notwendigerweise von Kohlenstoff im Kristall herrühren, sondern es ist weitaus wahrscheinlicher, dass dieser Kohlen stoff durch crack-Prozesse erst während der Analyse auf dem analysierten Kristall abgelagert wurde. Für diese Annahme sprechen im Fall von AlB10 und C4AlB24 besonders auch die sehr unterschiedlichen und nicht reproduzierbaren Analysenergebnisse mit Mikrosonden.

Tabelle 2. Vergleich der Elektronendichten in den Lücken zwischen den Bor-Ikosaedern in AlB₁₀ und C₄AlB₂₄

Atom		Zahl der Elektronen auf den Zwischenikosaederplätzen					
	Punktlage	AlB ₁₀ (Will, 1967)	C4A1B24 (diese Arbeit)		C ₈ Al _{2,1} B ₅₁ (Perrotta, Townes & Potenza, 1969)		
$\mathbf{B}(b)$	8(<i>f</i>)	$\binom{20}{25\cdot 3}$ { 45.3					
C		255		48	48		
Al(1)	4(c)	9,6	8,5	(16,3%)	8,5		
Al(2)	4(b)	13,7	13,7	(26,3%)	(Bor) 18,3		
Al(3)	16(h)	13,7	11,7	(5,6%)	12,2		
A1(4)	8(f)	2.0	0		1.5		

mechanischen Überlegungen von Longuet-Higgins & Roberts (1955) gut verstehen. Demnach neigen die Boratome in den Borikosaedern zur Bildung von kovalenten Bindungen senkrecht zur Ikosaederoberfläche und in der Kristallstruktur von C₄AlB₂₄ sind diese sp-Hybrid orbitale alle entweder durch B-B oder B-C-Bindungen abgesättigt. In AlB₁₀ hingegen mit nur vier extra Boratomen zwischen den Ikosaedern kann im Mittel jede vierte sp-Hybrid Bindung nicht abgesättigt werden, und daraus erklärt sich zwanglos die beobachtete Bevorzugung von Kohlenstoff beim Einbau in das Kristallgitter und die Schwierigkeiten wie sie bei der Darstellung von AlB10 beobachtet werden. Auch bei der Betrachtung der Besetzung der Orbitale der Borikosaeder mit Elektronen ergibt sich eine starke Bevorzugung von Kohlenstoff auf den Ikosaederbrückenplätzen gegenüber Bor: Jeder B₁₂-Ikosaeder hat 13 bindende, 17 antibindende und 12 sp-Hybrid Orbitale, zu deren Besetzung jedoch nur 36 Elektronen von den 12 Boratomen verfügbar sind. Die fehlenden 2 Elektronen müssen von den Atomen auf den Ikosaederbrückenplätzen bezogen werden, und wie von Longuet-Higgins & Roberts (1955) am Beispiel des Borkarbids, B₄C und des elementaren Bors gezeigt werden konnte ist dabei Kohlenstoff als Elektronendonator besonders geeignet. Tetragonales, elementares Bor sollte nach diesen Überlegungen quantenmechanisch nicht stabil sein. AlB10 und C4AlB10 können daher als Übergangsstufen in einer Reihe von Verbindungen von elementarem Bor zum Borkarbid betrachtet werden. Dabei ist AlB₁₀ dann als eine instabile Form von C₄AlB₂₄ anzusehen. Auf die nahe Verwandtschaft der Struktur von C₄AlB₂₄ mit Borkarbid wurde kürzlich auch von Perrotta, Townes & Potenza (1969) hingewiesen, und von Giese, Economy & Matkovich (1966) wurde sogar ein Phasenübergang von C₄AlB₂₄ beim Erhitzen in eine borkarbidähnliche Struktur mit rhomboedrischer Zelle beobachtet. Hingegen zeigten unsere analogen Untersuchungen an AlB₁₀-Kristallen, dass beim Erhitzen auf 950°C zwar ebenfalls ein Phasenübergang in eine rhomboedrische Zelle erfolgt, die jedoch weder mit C₄AlB₂₄ noch mit B₄C Ähnlichkeit besitzt (Will, 1969).

Tabelle 3. Bindungslängen in der Kristallstruktur von C₄AlB₂₄

(in Klammern Zahl der Bindungen pro Ikosaeder

(a) Bindungslängen innerhalb der Ikosaeder

B(1)-B(2)	(2)	1.797 ± 0.008
B(1) - B(3)	(4)	$1,825 \pm 0.007$
B(1) - B(5)	(4)	$1,850 \pm 0,008$
B(2) - B(3)	(4)	$1,792 \pm 0,006$
B(2) - B(4)	(4)	$1,814 \pm 0,008$
B(3)-B(3) (iii)	(2)	$1,741 \pm 0,016$
B(3)-B(4)	(4)	$1,794 \pm 0,006$
B(3) - B(5)	(4)	$1,803 \pm 0,006$
B(4)-B(4) (ii)	(1)	$1,822 \pm 0,011$
B(5)-B(5) (ii)	(1)	$1,817 \pm 0,011$
B-B Mittelwert		$1,810 \pm 0,002_6$

Tabelle 3. (Fort.)

(b) Abstände zwischen den Ikosaedern							
B(4)–B(5) (vii)	(4)	1.802 ± 0.008					
B(1) - B(1) (i)	(2)	1.767 ± 0.019					
C - B(2)	(2)	$1,609 \pm 0.013$					
C - B(3) (vi)	(4)	$1,642 \pm 0,007$					
(c) Abstände von Z	wischen-Il	kosaederatomen					
C-Al(1)		2.124 ± 0.009					
C-Al(2)		1.463 ± 0.006					
C-Al(3) (v)		1.992 ± 0.004					
(vi)		$1,701 \pm 0,006$					
Al(1)-B(3)		$2,061 \pm 0,005$					
Al(1) - B(4)		$1,948 \pm 0,006$					
Al(1)-B(5) (ii)		$1,942 \pm 0,005$					
Al(3)-B(1) (vi)		$2,146 \pm 0,005$					
(v)		$2,024 \pm 0,003$					
Al(3)–B(3) (vi)		$2,066 \pm 0,007$					
(vii)		$2,022 \pm 0,005$					
Al(3)–B(5)		$2,131 \pm 0,002$					
Al(3)-Al(2)		$1,137 \pm 0,005$					
Al(3)-Al(3) (iii)		$0,994 \pm 0,005$					
(ii)		2.044 + 0.005					

Für die angegebenen Transformationen der asymmetrischen Einheit gelten die Beziehungen:

(i)	x,	\bar{y} ,	ź
(ii)	х,	у,	Ī
(iii)	x,	ÿ,	Z
(iv)	$x, \frac{1}{2}$	-y,	Z
(v)	$\frac{1}{2} + x$,	$y_{1}^{\frac{1}{2}}$	+z
(VI)	$\frac{1}{2} - x$,	<i>y</i> , ½	+z
(VII)	$\frac{1}{2}+x$,	у, ‡	-z

Ich danke Herrn Professor Wölfel für sein wohlwollendes und förderndes Interesse. Mein Dank gilt ferner Herrn Dr Matkovich, Carborundum Co., Niagara Falls, N.Y., U.S.A, für die Überlassung von Kristallmaterial, Fr.H.Gross für die Hilfe bei den Messungen und bei der Auswertung, und dem Deutschen Rechenzentrum, Darmstadt, für die Bereitstellung von Computerzeit.

Literatur

- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- GIESE, R. F., ECONOMY, J. & MATKOVICH, V. I. (1966). Acta Cryst. 20, 697.
- HOARD, J. L., HUGHES, R. E. & SANDS, D. E. (1958). J. Amer. Chem. Soc. 80, 4507.
- KOHN, J. A., KATZ, G. & GIARDINI, A. A. (1958). Z. Kristallogr. 111, 53.
- LONGUET-HIGGINS, H. C. & ROBERTS, M. DE V. (1955). Proc. Roy. Soc. A 230, 110.
- MATKOVICH, V. I., ECONOMY, J. & GIESE, R. F. (1964). J. Amer. Chem. Soc. 86, 2337.
- WILL, G. (1963). J. Amer. Chem. Soc. 85, 2335.
- WILL, G. (1966). Nature, Lond. 212, 175.
- WILL, G. (1967). Acta Cryst. 23, 1071.
- WILL, G. (1969). Z. Kristallogr. 128, 156.
- PERROTTA, A. J., TOWNES, W. D. & POTENZA, J. A. (1969). Acta Cryst. B25, 1223.